

An Energy Efficiency Workshop & Exposition
Palm Springs, California

Please be courteous to our speakers

Turn off all cell phones and Set pagers to vibrate

Energy Benchmarking in Cleanrooms

William Tschudi Lawrence Berkeley National Laboratory

Why Benchmark High-tech Buildings?

PG&E saw that the market was large and growing. In California:

- 9400 GWH in 1997 (all high tech buildings)
- 4.2 million sq. ft. of operating cleanrooms
- Semiconductor and Biotech exhibited high growth

June 2 - 5, 2002

www.energy2002.ee.doe.gov

- 5

Why Benchmark High-tech Buildings?

Cleanroom owners and operators saw an opportunity to learn about their energy end use, compare their efficiency to others, and find some efficiency improvement opportunities.

June 2 -5,2002

www.energy2002.ee.doe.gov

Why Benchmark Cleanrooms?

- Identify energy efficiency opportunities
- Discover Operational and Maintenance problems
- Determine best practices to influence retrofit or new construction
- Reduce electrical demand to improve reliability and room for growth

June 2 - 5, 2002

www.energy2002.ee.doe.gov

-

Benchmarking Process

- General plan informs participants
- Enlist Benchmarking participants
- Site specific plan
- On-site measurement and data collection

June 2 - 5, 2002

www.energy2002.ee.doe.gov

Communicating Results

- Participant review of draft site report
- Final participant report and anonymous version
- Database updated and summarized on LBNL web site along with anonymous reports

June 2 - 5, 2002

www.energy2002.ee.doe.gov

9

What is a cleanroom?

- A space with a controlled environment usually for contamination control
- Cleanliness is achieved by moving large amounts of air through HEPA filters
- Cleanrooms come in varying degrees of cleanliness – called cleanliness class
- Cleanliness class dictates air change rates

June 2 -5, 2002

www.energy2002.ee.doe.gov

Additional Energy Drivers

- Hazardous materials are often used in processes housed in cleanrooms requiring lots of exhaust
- Processes in cleanrooms often require tight temperature and humidity control

June 2 - 5, 2002

 $www.\ energy 2002. ee. doe. gov$

Need for common metrics

- ☐ Ability to compare performance regardless of process
- ☐ Focus on system efficiency rather than production efficiency

June 2 -5, 2002

www.energy2002.ee.doe.gov

12

Cleanroom metrics

- □ Air Systems cfm/kW
- □ Cleanroom air changes ACh/hr
- □ Air velocity in cleanroom ft/sec

June 2 -5, 2002

www.energy2002.ee.doe.gov

Central Plant metrics

Chilled water efficiency – kW/ton

- > Chiller
- Cooling tower
- > Pumping Chilled water, Condenser water, hot water

June 2 - 5, 2002

www.energy2002.ee.doe.gov

15

Energy Benchmarks Data Base

- Anonymous reporting
- System comparison
- Component comparison
- Comparison of overall facility
- No production metrics

June 2 -5, 2002

 $www.\ energy 2002. ee. doe. gov$

Cleanroom Benchmarking

The Results

June 2 -5,2002

www.energy2002.ee.doe.gov

Process load Issues

- Total electrical loads vary greatly depending upon the process in the room
- Electrical load is converted to heat which is removed by HVAC and process cooling systems
- Estimating the process heat load is a challenge
- HVAC equipment sized correctly operates more efficiently
- Benchmark data can help determine real design loads for use in future projects

June 2 -5, 2002

www.energy2002.ee.doe.gov

Recirculation System Findings

- Energy use for recirculation systems varied by as much as a factor of 10
- Plenum systems (low pressure drop) were generally more efficient
- Ducted systems (high pressure drop) were less efficient
- □ Fan-filter units were relatively inefficient (but are improving)

June 2 -5, 2002

www.energy2002.ee.doe.gov

June 2 -5, 2002

www.energy2002.ee.doe.gov

Observations

- Large variations exist
- Designers, Owners, and Facility staff do not know what is possible to attain
- Or how they are operating
- □ There is generally a lack of monitoring instrumentation

June 2 - 5, 2002

www.energy2002.ee.doe.gov

27

My Recommendation

Designers (and constructors) will provide what their customers ask for.

If you want efficient systems, ask for them.

June 2 -5,2002

www.energy2002.ee.doe.gov

Why is make-up air system efficiency lower?

- Retrofitted systems with less than optimal configurations
- High face velocity air handlers (due to space constraints or just inattentive design)
- Older less efficient equipment (motors, fans)
- Resistance due to heating and cooling coils, filters, etc.
- Duct sizing and layout

June 2 -5, 2002

www.energy2002.ee.doe.gov

31

A Typical Make-up Air Handler

June 2 -5, 2002

www.energy2002.ee.doe.gov

Why are Design Efficiencies less than Measured Efficiencies?

Design efficiency is generally understated because larger power consumption (kW) is generally assumed.

June 2 -5, 2002

www.energy2002.ee.doe.gov

Make-up Air System Considerations

- Optimize exhaust and pressurization
- Minimize resistance of make-up air path
- **♦** Close coupling large equipment
- * Reduce air handler face velocity
- Select efficient fans and motors
- Use VFD controls

June 2 -5, 2002

www.energy2002.ee.doe.gov

Air Change Rate and Velocity Observations

- Again, wide variation
- All processes had acceptable yields (so why do some work with less airflow?)
- Some air flows exceed recommended ranges (IEST provides recommendations based upon historical adequacy – not science based)
- Air velocity reduction and ceiling filter coverage represent opportunities

June 2 - 5, 2002

www.energy2002.ee.doe.gov

My conclusion:

Existing efficiency information for chilled water plants is under-utilized.

June 2 - 5 2002

www.energy2002.ee.doe.gov

4.1

Non-energy benefits of Benchmarking

- Maintenance problems are discovered
- Operational inefficiencies are revealed
- Reliability can be improved
- □ Safety issues can be discovered

June 2 -5, 2002

www.energy2002.ee.doe.gov

Benchmarking Identified New Efficiency Concepts

For Cleanrooms:

- Match cleanliness to contamination problem
- Investigate reduction in air change rates

Optimize chilled water pumping

Optimize flow resistance

June 2 - 5, 2002

www.energy2002.ee.doe.go

Thank You

June 2 - 5, 2002

www.energy2002.ee.doe.gov